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ABSTRACT 

Suppose (X, D*) is a D*- metric space and P, Q and T are selfmaps of X. If these three maps and the 

space X satisfy certain conditions, we shall prove that they have a unique common fixed point in this 

paper. As a consequence we deduce a common fixed point theorem for three selfmaps of a complete 

D*- metric space. Further, we show that a common fixed point theorem for three selfmaps of a metric 

space proved by S. L. Singh and S. P. Singh ([9]) follows as a particular case of the theorem. 
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1. INTRODUCTION AND PRELIMINARIES 

 

The study of contractive type conditions through metric spaces in fixed point theory plays vital 

role because it finds many applications in different areas like differential equations, integral 

equations, game theory, operational research and mathematical economics. 

 

Different mathematicians tried to generalize the usual notion of metric space (X, d). In 1992 

Dhage [2] has initiated the study of generalized metric space called D- metric space and fixed 

point theorems for selfmaps of such spaces. Later researchers have made a significant 

contribution to fixed point of D- metric spaces in [1], [3], and [4]. Unfortunately almost all the 

fixed point theorems proved on D-metric spaces are not valid in view of papers [5], [6] and [7].  

 

Recently Shaban Sedghi, Nabi Shobe and Haiyun Zhou [8], have introduced D*- metric spaces 

as a probable modification of D- metric spaces and proved some fixed point theorems. 

Definition 1.1 ([8]): Let X be a non-empty set. A function D*: X3 → [0, ∞) is said to be a 

generalized metric or D*-metric or G-metric on X, if it satisfies the following conditions 

(i) D *(x, y, z) ≥ 0 for all x, y, z ∈ X. 

(ii) D *(x, y, z) = 0 if and only if x = y = z. 

(iii) D *(x, y, z) = D *(σ (x, y, z)) for all x, y, z ∈ X 

             where σ (x, y , z) is any permutation of the set {x, y , z}. 
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(iv) D *( x, y , z ) ≤  D *(x , y , w )+ D *(w, z , z) for all x, y , z , w ∈ X .  

The pair (X, D *), where D * is a generalized metric on X is called a D*–metric space or a 

generalized metric space. 

Example 1. 2:  Let (X, d) be a metric space. Define D1*: X3 → [0, ∞) by  

D1*(x, y, z) = max {d(x, y), d(y, z), d (z, x)} for x, y, z ϵ X. Then (X, D1*) is a generalized 

metric space. 

Example 1.3: Let (X, d) be a metric space. Define D2*: X3 → [0, ∞) by  

D2*(x, y, z) = d(x, y) + d(y, z) + d (z, x) for x, y, z ϵ X. Then (X, D2*) is a generalized metric 

space. 

Example 1.4: Let X = R, define D*: R3 → [0, ∞) by  

                       D *(x, y, z) = {     
0                     if x = y = z

max  {x, y, z} otherwise
 

Then (R, D *) is a generalized metric space. 

Note 1.5:  Using the inequality in (iv) and (ii) of Definition 1.1, one can prove that if           (X, 

D *) is a D*–metric space, then D *(x, x, y) = D *(x, y, y) for all x, y, ∈ X. 

Infact  D *(x, x, y) ≤ D *(x, x, x) + D *(x, y, y) = D *(x, y, y) and 

D *( y , y , x ) ≤  D *( y , y , y )+ D *(y , x , x ) = D *(y , x , x),  proving the inequity. 

Definition 1.6:  Let (X, D*) be a D*-metric space. For x ϵ X and r > 0, the set                      BD*(x, 

r) = {y ϵ X; D*(x, y, y) < r} is called the open ball of radius r about x.  

For example, if X = R and D*: R3 → [0, ∞) is defined by  

D*(x, y, z) = | x – y | + | y – z | +| z - x| for all x, y, z ϵ R. Then 

BD*(0, 1) = {y ϵ R; D*(0, y, y) < 1} 

                = {y ϵ R; 2| y | < 1} 

                ={y ϵ R; | y | < ½} = (- ½, ½). 

Definition 1.7: Let (X, D *) be a D*–metric space and E ⊂ X.  

(i) If for every x ∈ E, there is a δ > 0 such that BD* (x, δ )⊂ E, then E is said to be   

            an open subset of X 

(ii) If there is a k > 0 such that D *(x, y, y) < k for all x, y ∈ E then E is said to be  D*–

bounded. It has been observed in [9] that, if τ is the set of all open sets in (X, D*), 
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then τ is a topology on X (called the topology induced by the D*–metric) and also 

proved that BD* (x, r) is an open set for each x ∈ X and r > 0 ([8], Lemma 1.5). If 

(X, τ) is a compact topological space we shall call (X, D *) is a compact D*–metric 

space. 

Definition 1.8:   Let (X, D *) be a D*–metric space.  A sequence {xn} in X is said to  

(i) converge to x if  D *(xn , xn , x ) = D *(xn , x , x) → 0 as n →∞  

(ii) be a Cauchy sequence, if to each ∈ > 0, there is a natural number n0  

             such that D *(xn , xn , xm ) < ∈ for all m , n ≥ n0 . 

 It is easy to see (infact proved in [8], Lemma 1.8 and Lemma 1.9) that, if {xn} converges 

to x in(X, D*) then x is unique and that {xn} is a Cauchy sequence in (X, D*). However, a 

Cauchy sequence in a (X, D *) need not be convergent as shown in the example given below. 

 Example 1.9:  Let X = (0, 1] and D *(x, y, z) = | x – y | +| y – z | + | z – x | for x, y, z ∈ X, so 

that (X, D *) is a D*–metric space. 

Define xn =  
1

n
  for n = 1, 2, 3 ……., then                                                                                                                                                    

D *( xn , xn , xm ) = 2 | xn – xm | = 2 |  -  |, so that 

D *( xn , xn , xm ) → 0 as m, n → ∞, proving {xn} is a Cauchy sequence in (X, D*). Clearly 

{xn} does not converge to any point in X. 

Definition 1.10:  A D*–metric space (X, D *) is said to complete if every Cauchy sequence in 

it converges to some point in it.  

It follows that the D*–metric space given in Example 1.9 is not complete.  

 Note 1.11:  We have seen (In Example 1.2 and Example 1.3) that on any metric space (X, d) it 

is possible to define at least two D*–metrics, namely D1* and D2 *, using the metric d. We 

shall call D1 * and D2 * as D*–metrics induced by d. Thus every metric space (X, d) gives rise 

to at least two D*–metric spaces (X, D1 *) and (X, D2*). Also if (X, D *) is a D*–metric then 

defining d0 (x, y) = D *(x, y, y) for x, y ∈ X, we can show easily that   (X, d0) is a metric space 

and we shall call d0 as a metric induced   by D *. 

The following result is of use for our discussion. 

 Theorem 1.12:  Let (X, d) be a metric space and Di *(i =1, 2) be the two D*– metrics induced 

by d (given in Example 1.2 and Example 1.3).  For any i (=1, 2) a sequence {xn} in   (X, Di *) 

is a Cauchy sequence if and only if {xn} is a Cauchy sequence in (X, d). 

 Proof: - First note that for i =1, 2 we have 

 d ( x , y ) ≤  Di *(x , y , y ) ≤  2d (x , y) for all x, y  ∈ X . 

http://www.ijise.in/


International Journal of Innovations in Scientific Engineering www.ijise.in 

 

(IJISE) 2019, Vol. No. 9, Jan-Jun  e-ISSN: 2454-6402, p-ISSN: 2454-812X 

 

85 

 

INTERNATIONAL JOURNAL OF INNOVATIONS IN SCIENTIFIC ENGINEERING 

 Now the theorem follows immediately in view of the above inequality. 

  For example, if {xn} is a Cauchy sequence in (X , d), then for any given ∈ > 0 choose  a  

natural  number  n0 such  that  m , n ≥ n0   implies d ( xm, xn) <  ; and note that for the same n0 

we have m, n ≥ n0   implies  Di *(xm , xn , xn ) ≤ 2d (xm xn ) < ∈,  

proving that {xn } is a Cauchy sequence in (X , Di *). 

Similarly the other part of the theorem can be proved using the other inequality noted in the 

beginning of the proof. 

 Corollary1.13:  Suppose (X, d) is a metric space. Let D1 * and D2 * be two D*– metrics 

induced by d, then for any i (=1, 2) the space (X, Di *) is complete if and only if (X, d) is 

complete.  

            Proof: - Follows from Theorem 1.12. 

 Definition 1.14:  If (X, D*) is a D*-metric space, then D* is a continuous function on X3,  in 

the sense that  (xn, yn, zn ) = D*(x, y, z), whenever {(xn, yn, zn)} in X3 converges to      

(x, y, z)  X3. Equivalently,       

             n= x, n= y, n= z (xn,yn,zn ) = D*(x,y,z).   

            Notation: For any selfmap T of X, we denote T(x) by Tx.  

If S and T are selfmaps of a set X, then any z ∈ X such that Sz = Tz = z is called a common 

fixed point of S and T. 

Two selfmaps S and T of X are said to be commutative if ST = TS where ST is their 

composition SoT defined by (SoT) x = STx for all x ∈ X. 

            Definition 1.15: Suppose S and T are selfmaps of a D*–metric space (X, D*) satisfying the 

condition    T(X) ⊆ S(X). Then for any x0 ∈ X, Tx0 ∈ T(X) and hence Tx0 ∈ S(X), so that there 

is a x1 ∈ X with Tx0 = Sx1, since T(X) ⊆ S(X). Now Tx1 ∈ T(X) and hence there is a x2 ∈ X 

with Tx2 ∈ T(X) ⊆ S(X) so that Tx1 = Sx2.  Again Tx2 ∈ T(X) and hence Tx2 ∈ S(X) with    Tx2 

= Sx3. Thus repeating this process to each x0 ∈ X, we get a sequence {xn} in X such that Txn = 

Sxn+1  for  n ≥ 0. We shall call this sequence as an associated sequence of x0 relative to the 

two selfmaps S and T. It may be noted that there may be more than one associated sequence 

for a point x0 ∈ X relative to selfmaps S and T. 

 

          Let S and T are selfmaps of a D*-metric space (X, D*) such that T(X) ⊆ S(X).   For any 

xo ϵ X, if {xn} is a sequence in X such that  Txn = Sxn+1 for    n ≥ 0, then {xn} is called an 

associated sequence of x0 relative to the two selfmaps S and T.  

Definition 1.16: A function Ø: [0, ∞) → [0, ∞) is said to be a contractive modulus, if            

Ø(0) = 0   and   Ø(t)  < t for t  >  0. 
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Definition 1.17: A real valued function Ø defined on X ⊆ R is said to be upper semi 

continuous, if lim
n→∞

sup Ø(tn) ≤ Ø (t) for every sequence {tn} in X with tn → t as n → ∞. 

Definition 1.18: If S and T are selfmaps of a D*-metric space (X, D*) such that for every 

sequence {xn} in X with lim
n→∞

Sxn = lim
n→∞

Txn = t, we have  

lim
n→∞

D*(STxn, TSxn, TSxn) = 0, then we say that S and T are compatible 

2. THE MAIN RESULTS: 

2. 1 Theorem: Let P, Q and T are selfmaps of a D*- metric space (X, D*) satisfying the 

conditions 

(i)    P(X) ∪ Q(X) ⊆ T(X)  

(ii)    D*(Px, Qy, Qy) ≤ Ø (𝜆(x, y)) for all x, y ϵ X 

   where Ø is an upper semi continuous and contractive modulus  

    and 

(ii)ʹ 𝜆(x, y) = max {D*(Tx, Ty, Ty), D*(Px, Tx, Tx), D*(Qy, Ty, Ty),                                  

                                     
1

2
 [D*(Px, Ty, Ty) + D*(Qy, Tx, Tx)]}  

(iii) either (P, T) or (Q, T)  are compatible pair 

and 

(iv)  T is continuous 

       Further, if 

(v) there is a point x0 ϵ X and an  associated sequence {xn} of x0  relative to the three 

selfmaps  such that the sequence Px0, Qx1, Px2, Qx3, ….., Px2n, Qx2n+1, ….. converge to 

some point z ϵ X,  

then P, Q and T have a unique common fixed point z ϵ X. 

Before we give the proof of theorem, we establish some lemmas. 

2.1. 1 Lemma: Suppose P, Q and T are selfmaps of a D*- metric space (X, D*) satisfying the 

conditions (i), (ii), (iv) and (v) of theorem 2.1. Then for any associated sequence {xn} of 

x0  relative to P, Q and T we have   

(a) limn→∞ λ(Tx2n, x2n+1 )  = D*(z, Tz, Tz) if (P, T) is compatible 

and 

(b) limn→∞ λ(x2n, Tx2n+1 )   = D*(z, Tz, Tz) if (Q, T) is compatible 
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Proof: Since by (v), each of the sequences {Px2n} and {Qx2n+1} converge to z ϵ X and since    

Px2n = Tx2n+1 and  Qx2n+1 = Tx2n+2  for n ≥ 0,  we have 

(2. 1. 2) Px2n, Qx2n+1, Tx2n, Tx2n+1 → z as n → ∞. 

 Now since T is continuous, we have 

(2.1.3)  TPx2n → Tz, T2x2n→ Tz as n → ∞ 

  (a) If the pair the pair (P, T) is compatible, we have 

(2.1.4) lim
n→∞

D ∗ (PTx2n, TPx2n, TPx2n) = 0 

 since Px2n, Tx2n → z as n → ∞ by (2. 1. 2). 

Now, in view of (2. 1. 3) and (2. 1. 4), we get  

(2.1.5)  PTx2n → Tz as n→ ∞. 

Also, from (ii)ʹ, we have  

(2. 1. 6) 𝜆(Tx2n, x2n+1) = max {D*(T2x2n, Tx2n+1, Tx2n+1), D*(PTx2n, T
2x2n, T

2x2n),                                                                    

              D*(Qx2n+1, Tx2n+1, Tx2n+1), 
1

2
 [D*(PTx2n, Tx2n+1, Tx2n+1) + D*(Qx2n+1, T

2x2n, T
2x2n)]}  

Letting n to ∞ in (2. 1. 6) and using the continuity of D*, (2. 1. 2), (2. 1. 3), (2. 1. 4)  and      (2. 

1. 5) we get 

 limn→∞ λ(Tx2n, x2n+1 )  = max {D*(Tz, z, z), D*(Tz, Tz, Tz), D*(z, z, z),                                

                                                                  
1

2
 [D*(Tz, z, z ) + D*( z, Tz, Tz)] } 

                                         = D*(z, Tz, Tz).  

(b) If the pair the pair (Q, T) is compatible, we have 

(2. 1. 7) lim
n→∞

D ∗ (TQx2n+1, QTx2n+1, QTx2n+1) = 0 

in view of (2. 1. 2). Also since T is continuous, we have again by (2. 1. 2),  

(2. 1. 8) T2x2n+1 → Tz and  TQx2n+1→ Tz as n → ∞. 

Now, in view of (2. 1. 7) and (2. 1. 8), we get  

(2. 1. 9) QTx2n+1 → Tz  as n→ ∞. 

Now, from (ii)ʹ, we have  

(2. 1. 10) 𝜆(x2n, Tx2n+1) = max {D*(Tx2n, T
2x2n+1, T

2x2n+1), D*( Px2n,  Tx2n,  Tx2n),                                                                           
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         D*(QTx2n+1, T
2x2n+1, T

2x2n+1), 
1

2
 [D*(Px2n, T

2x2n+1, T
2x2n+1) + D*(QTx2n+1, Tx2n, Tx2n)]} 

Now letting n to ∞ in (2. 1. 10) and using the continuity of D*, (2. 1. 2), (2. 1. 8) and (2. 1. 9), 

we get limn→∞ λ(x2n, Tx2n+1 )  = max {D*(z, Tz, Tz), D*(z, z, z), D*(Tz, Tz, Tz),                                                                 

                                                                            
1

2
 [D*(z, Tz, Tz ) + D*( z, Tz, Tz)] } 

                                         = D*(z, Tz, Tz). Hence the lemma. 

2. 2 Prof of Theorem 2. 1: In this section we first prove the existence of a common fixed point 

in the two cases of the condition (iii) in Theorem 2. 1. 

Case (I). First suppose that the pair (P, T) is compatible. Then from (ii), we have   

 (2. 2. 1) D*(PTx2n, Qx2n+1, Qx2n+1) ≤ Ø (𝜆(Tx2n, x2n+1)) 

 In which on letting n to ∞ using Lemma 2. 1. 1, and  the continuity of D*, we get  

 (2. 2. 2) D*(Tz, z, z) ≤ Ø (D*(Tz, z, z)) 

  and this leads to a contradiction if Tz ≠ z. Therefore Tz = z. 

Again, from condition (ii), we have  

(2. 2. 3) D*(Pz, Qx2n+1, Qx2n+1) ≤ Ø (𝜆(z, x2n+1)). But  

𝜆(z, x2n+1) = max {D*(Tz, Tx2n+1, Tx2n+1), D*( Pz, Tz,  Tz),                                                                       

                             D*(Qx2n+1, Tx2n+1, Tx2n+1), 
1

2
 [D*(Pz, Tx2n+1, Tx2n+1) + D*(Qx2n+1, Tz, Tz)]} 

   which on letting n to ∞ and the use of  continuity of D* imply   

 lim
n→∞

λ(z, x2n+1) = D*(z, Pz, Pz), 

Now letting n to ∞ in (2. 2. 3), we get by the continuity of D* that 

(2. 2. 4) D*(Pz, z, z) ≤ Ø (D*(Pz, z, z)) 

and this leads to a contradiction if Pz ≠ z. Therefore Pz = z. 

Now again, from condition (ii), we have  

(2. 2. 5) D*(Px2n, Qz, Qz) ≤  Ø (𝜆(x2n, z)). But  

𝜆(x2n, z) = max {D*(Tx2n, Tz, Tz), D*( Px2n, Tx2n,  Tx2n),                                                                        

                                                D*(Qz, Tz, Tz), 
1

2
 [D*(Px2n, Tz, Tz) + D*(Qz, Tx2n, Tx2n)]} 

  in which on letting n to ∞ and the continuity of D*, we get    
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lim
n→∞

λ(x2n,   z) = D*(z, Qz, Qz), since Px2n → z, Tx2n→ z as n → ∞. Then (2. 2. 5) gives 

(2. 2. 6) D*(z, Qz, Qz) ≤ Ø (D*(z, Qz, Qz)) 

and this will give a contradiction if Qz ≠ z. Therefore Qz = z. 

Hence z = Pz = Qz  = Tz, showing that z is a common fixed point of P, Q and T. 

Case (ii): Suppose that the pair (Q, T) is compatible, then from (ii), we have   

 (2. 2. 7) D*(Px2n, QTx2n+1, QTx2n+1) ≤ Ø (𝜆(x2n, Tx2n+1)) 

  in which on letting n to ∞ using Lemma 2. 1. 1, (2. 1. 9), and the continuity of D*, we get  

 (2. 2. 8) D*(z, Tz, Tz) ≤ Ø (D*(z, Tz, Tz)) 

  and this will be a contradiction if Tz ≠ z. Therefore Tz = z. 

Again, from condition (ii), we have  

(2. 2. 9) D*(Pz, Qx2n+1, Qx2n+1) ≤  Ø (𝜆(z, x2n+1)). But  

𝜆(z, x2n+1) = max {D*(Tz, Tx2n+1, Tx2n+1), D*( Pz, Tz,  Tz),                                                                       

                             D*(Qx2n+1, Tx2n+1, Tx2n+1), 
1

2
 [D*(Pz, Tx2n+1, Tx2n+1) + D*(Qx2n+1, Tz, Tz)]}   

  so that lim
n→∞

λ(z, x2n+1) = D*(z, Pz, Pz), 

Therefore, from (2. 2. 9), we have  

(2. 2. 10) D*(Pz, z, z) ≤ Ø (D*(Pz, z, z)) 

and this leads to a contradiction if Pz ≠ z. Therefore Pz = z. 

Again, from condition (ii), we have  

(2. 2. 11) D*(Px2n, Qz, Qz) ≤ Ø (𝜆(x2n, z)). But  

𝜆(x2n, z) = max {D*(Tx2n, Tz, Tz), D*( Px2n, Tx2n,  Tx2n),                                                                        

                                                D*(Qz, Tz, Tz), 
1

2
 [D*(Px2n, Tz, Tz) + D*(Qz, Tx2n, Tx2n)]} 

  in which on letting n to ∞ we get lim
n→∞

λ(x2n, z) = D*(z, Qz, Qz),  

since Px2n → z, Tx2n→ z as n → ∞ and Pz =z = Tz, 

Then (2. 2. 11) gives 

(2. 2. 12) D*(z, Qz, Qz) ≤ Ø (D*(z, Qz, Qz)) 
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and this will give a contradiction if Qz ≠ z. Therefore Qz = z. 

Hence z = Pz = Qz = Tz, showing that z is a common fixed point of P, Q and T 

Now, we prove the uniqueness of the common fixed point. If possible, let zʹ be another 

common fixed point of P, Q and T. Then from condition (ii), we have 

(2. 2. 13) D*(z, zʹ, zʹ) =D*(Pz, Qzʹ, Qzʹ) ≤ Φ(𝜆(z, zʹ)). But  

𝜆(z, zʹ) = max {D*(Tz, Tzʹ, Tzʹ), D*( Pz, Tz,  Tz), D*(Qzʹ, Tzʹ, Tzʹ),                                                                       

                                                      
1

2
 [D*(Pz, Tzʹ, Tzʹ) + D*(Qzʹ, Tz, Tz)]} 

              = D*(z, zʹ, zʹ). Therefore (2. 2. 13) gives   

(2. 2. 14) D*(z, zʹ, zʹ) ≤ Φ(D*(z, zʹ, zʹ)) and this will be contradiction if z ≠ zʹ. Therefore        z 

= zʹ. Thus z is the unique common fixed point of P, Q and T. 

  Thus the Theorem 2. 1 is completely proved. 

2.3 A Common Fixed Point Theorem for Three Selfmaps of a Complete D*- metric space:  

Before we prove the main result of this section, we prove the following lemma: 

2.3.1 Lemma: Let (X, D*) be a D*- metric space and P, Q and T be selfmaps of X such that  

(i)  P(X) ∪ Q(X) ⊆ T(X)    

(ii)   D*(Px, Qy, Qy) ≤ c. 𝜆(x, y) for all x, y ϵ X 

       where 0 ≤ c ˂ and 𝜆(x, y) is as defined in (ii)ʹ of Theorem 2. 1 

       Further, if 

(iii) (X, D*) is complete. 

Then for any x0 ϵ X and for any of its associated sequence {xn} relative to the three selfmaps, 

the sequence Px0, Qx1, Px2, Qx3….., Px2n, Qx2n+1, ….. converges to some z ϵ X.  

Proof: Suppose P, Q and T be selfmaps of a D*-metric space (X, D*) for which the conditions 

(i) and (ii) hold. Let x0 ϵ X and {xn} be an associated sequence of x0 relative to three selfmaps. 

Then, since   Px2n = Tx2n+1 and Qx2n+1 = Tx2n+2 for n ≥ 0. Note that  

𝜆(x2n, x2n+1) = max {D*(Tx2n, Tx2n+1, Tx2n+1), D*(Px2n, Tx2n, Tx2n), D*(Qx2n, Tx2n+1, Tx2n+1),        

                                       
1

2
 [D*(Px2n, Tx2n+1, Tx2n+1) + D*(QTx2n+1, Tx2n, Tx2n)]}                                       

               = max {D*(Tx2n, Tx2n+1, Tx2n+1), D*(Tx2n+1, Tx2n, Tx2n), D*(Tx2n+2, Tx2n+1, Tx2n+1),  
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1

2
 [D*(Tx2n+1, Tx2n+1, Tx2n+1) + D*(Tx2n+2, Tx2n, Tx2n)]}            = 

max {D*(Tx2n, Tx2n+1, Tx2n+1), D*(Tx2n+2, Tx2n+1, Tx2n+1), 
1

2
 D*(Tx2n+2, Tx2n, Tx2n)} 

Since  
1

2
 D*(Tx2n+2, Tx2n, Tx2n) = 

1

2
 [D*(Tx2n+2, Tx2n+1, Tx2n+1) + D*(Tx2n+1, Tx2n, Tx2n)]} 

                                                  ≤ max {D*(Tx2n+2, Tx2n+1, Tx2n+1), D*(Tx2n+1, Tx2n, Tx2n), 

𝜆(x2n, x2n+1) ≤ max { D*(Tx2n, Tx2n+1,Tx2n+1), D*(Tx2n+1, Tx2n+2, Tx2n+2)} 

Now by (ii)     

   D*(Tx2n+1, Tx2n+2, Tx2n+2) = D*(Px2n, Qx2n+1, qx2n+1)   ≤ c. 𝜆(x2n, x2n+1)    

                                            ≤ c.  max { D*(Tx2n, Tx2n+1, Tx2n+1),  D*(Tx2n+1, Tx2n+2, Tx2n+2)}. 

Since 0 ≤ c < 1, it follows from that the   

max { D*(Tx2n, Tx2n+1, Tx2n+1),  D*(Tx2n+1, Tx2n+2, Tx2n+2)} = D*(Tx2n, Tx2n+1, Tx2n+1) 

Therefore      D*(Tx2n+1, Tx2n+2, Tx2n+2) ≤ c. D*(Tx2n, Tx2n+1, Tx2n+1) …….. (A) 

Similarly, we can prove 

D*(Tx2n, Tx2n+1, Tx2n+1) ≤ c. D*(Tx2n, Tx2n-1, Tx2n-1) …….. (B) 

From (A) and (B), we get 

D*(Tx2n+1, Tx2n+2, Tx2n+2) ≤ c2   D*(Tx2n, Tx2n-1, Tx2n-1) 

                                          ≤ c4   D*(Tx2n-1, Tx2n-3, Tx2n-3) 

- - - - - - - - - - - - - - - - - - - -  

- - - - - - - - - - - - - - - - - - - -  

                                        ≤ c2n   D*(Tx2,Tx0,Tx0) → 0 

 Since c2n → 0 as n → ∞ (because c < 1), the sequence {Txn} and hence Px0, Qx1, Px2, 

Qx3,….., Px2n, Qx2n+1….. is a Cauchy sequence in the complete space (X, D*) and therefore 

converges to a point say z ϵ X, proving lemma. 

2.3.2 Remark: The converse of lemma is not true. That is, suppose P, Q and T are selfmaps of 

a D*-metric space (X, D*) satisfying condition (i) and (ii) of Lemma 2.3.1. Even,  if for each  

x0 ϵ X and for each associated sequence  {xn} of x0 relative to P, Q and T, the sequence Px0, 

Qx1, Px2, Qx3, ….., Px2n, Qx2n+1, …..   converges in X, then (X, D*) need not complete. 

2. 3. 3 Theorem: Suppose (X, D*) is a D*-metric space  satisfying conditions (i) to (iv) of 

Theorem 2. 1.  Further, if (v)ʹ (X, D*) is complete 

 then P, Q and T have a unique common fixed point zϵ X.    
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Proof:  In view of Lemma 2.3.1 the condition (v) of Theorem 2.1 holds as view of (v)'. 

Hence the Theorem follows from Theorem 2.1. 

2.3.4 Corollary ([9]):  Let P, Q and T be selfmaps of a metric space (X, d) such that  

(i)         P(X) ∪ Q(X) ⊆ T(X)   

(ii)        d(Px, Qy)  ≤  c 𝜆0 (x, y)) for all x, y ϵ X, 

             where  

(ii)'   𝜆0(x, y) = max {d(Tx, Ty), d(Px, Tx), d(Qy, Ty), 
1

2
[d(Px, Ty) + d(Qy, Sx)]}and 0 ≤ c < 1  

(iii)      T is continuous,               and 

(iv)       PT = TP and QT = TQ 

             Further, if 

(v)        X is complete 

          Then P, Q and T have a unique common fixed point in zϵ X. 

Proof:  Given (X, d) is a metric space satisfying condition (i) to (v) of the corollary. If         

D1*(x, y, z) = max {d(x, y), d(y, z), d (z, x), then (X, D1*) is a D*-metric space and             D1*(x, 

y, x) = d(x, y). Therefore condition (ii) can be written as D1*(Px, Qy, Qy) ≤ c. 𝜆(x, y) for all x, 

y ϵ X where  𝜆(x, y) = max {D1*(Tx, Ty, Ty), D1*(Px, Tx, Tx), D1 *(Qy, Jy, Jy),    

                                                       
1

2
[D1*(Px, Ty, Ty) + D1*(Qy, Tx, Tx)]} 

which is the same as condition (ii) of Theorem 2.3.3. Also since (X, d) is complete, we have 

(X, D1*) is complete by Corollary1.13. 

  Now, P, Q and T are selfmaps on (X, D1*) satisfying conditions of Theorem 2.3.3 and 

hence the corollary follows.  
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